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EXTENSION OF THE LEVI-CIVITA THEOREM TO NONHOLONOMIC SYSTEMS®

P. CAPODANNO

The Levi-Civita theorem on stationary solutions of an autonomous canonical system
which admits invariant relations in involution is extended to nonholonomic systems
with time-independent constraints. This was obtained using the canonical form of
Voronets' equations. It is shown that the system can be extended to gyroscopic sys-—
tems.

1. The canonical form of Voronets' equations. Consider a material system whose
position is defined by n Lagrangian coordinates g¢; and subjected to the action of forces that

are derivatives of function U (gq,.. ., ¢3), and to the nonholonomic relations
K
0 = Dbl g G<n, r=k+1.n) (1.1)
1=

We denote the system kinetic energy by T (g, ¢» ¢;', ¢-) and set

k
099 0:) =T (¢ ¢rr 04" 121 bugr) (=1, ...,k r=k+1,...,n)

The equations of motion are obtained by supplementing Egs.(l1.l) by the Voronets equations

/1/

n n k
d 9 __6(84U) ae+0) . aT [C VPP
dt ( aqi') % ——r_;H 7, b= ;’l 7, ZA;[ q: (L—-.i,...,k) (1.2)
= ra=

=1

n \3
Agr)__ abri + abri b, — abrl _ b, b,
i = a4, ag, sl 3g, ag, %
s=k+1 s=K+1

where the derivatives 07T/dg, are expressed in terms of g;, ¢, ¢, and the quantities Au" are
antisymmetric with respect to indices i and L.
We set
L (g1, gr 1) =k6 + U, p; = 0Llog;’

H (g1 97 p)) = 211 pigi — L (¢ 0 43)

and write the Voronets equation in its canonical form

dg;/dt = 0H/dp; (i =1,. .., k) (1.3)
b _ _OH i by 2Ly 5: ii o
dt dg, L oq; Lt o, & op,

where the derivatives o7T/dq, are expressed in terms of g¢;, ¢, p;. Equation (1.3) is to be

supplemented by the equation of constraints

k
oH
q,'=2b,i(ql,...,q,,)—(W r=k-+1,...,n) (1.4)

i=]

In what follows the symbol D/Df will denote the time derivative by virtue of system (1.3),
(1.4).

Remarks.lo. Function H is the first integral of system (1.3), (1.4). Indeed, taking
into consideration (1.4) and the antisymmetry of quantities Ay, we have DH/pt = 0.
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2°. The necessary and sufficient condition for function ¢{g;, g,,p;) to be the first in-
tegral of system (1.3), {(1.4) is of the form

k n n k&
2' 2' (e 0H  S9 OH Z' 2 2 I 4 %9 OH 4 1.5)
(@ B + b"( %, %, — Op; O, ) + e f % P (
= £

i==1 re=K41
dp OH
(cp,H)k—Z( ,,,,{ - ,.,qi)

3°. The condition of stationarity of H is

6% _0 af’i == ,a—g-_{} G=4..., kr=k-+1,...,n)

These relations evidently constitute a set of invariant relations for system (1.3), (1.4},
as shown by a direct test that

D aH D oH D (éH
-ﬁf(ﬂqi)’ Tt—(api)’ Dt 0qr

are linear combinations of @H/dq;, 8H/0p;, 6H/dq, and, consequently, vanish together with them.

2. Extension of the Levi-Civita theorem to nonholonomic systems.Levi-Civita
had shown /2,3/ that, when an autonomous canonical system has m invariant relations (respect-
ively, m first integrals) which are in involution, it has oo™ (respectively oo?" )} particular
solutions (called stationary) obtained by the integration of m first order differential equa-
tions of standard form. Let us extend that theorem to system (1.3), (1.4). Assume that system
(1.3), (1.4) has m independent of time { invariant relations

fuld - et @ Pry o P =0 (w=141,..., mm<k

which satisfy conditions similar to (1.5)

of af, of R i, o
st 33 (=g ) $ NI AP0 wetioam @)
=K1 i=1 * ¢ T r=kpi=l =1 T 1 t

Suppose that the m invariant relations are solvable for Py .« Pm
Pa - q)m (Qh vy Qm pmﬂ, ..y pk) = 0 (a' == 1» LI 2 m) (2-2)

Taking into account the relations

é
+2 fu &—-0 (=1,..., m s=1,...,n)

3, 0iv "‘Pp

. 2 %, Ty =0 @w=1,....,m, h=m-+1,...,k)

we transform condition (2.1) to

L m

8. ot
Z; ap: -3;'§Faa(ql,--~,qn,pm+g,-.-,m:)ao
=1 By

Since the functional determinant of functions fy is by assumption nonzero relative to pg.
these conditions reduce to
Fap =0 (@, p=1,...,m)

Using the implicit expressions for Fus we represent conditions (2.1) in the form
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oy, g z o0, o oE ap, o ag, 0
B _ b —b o) b Po 9Py o P 9Pg .
aq dg +{(Pa,(P§} Z’ ( ro Bq 8 5 T oo ——— | - (2.3)
B * r=k+1 e r=K-+1 he=mt1 9 o % ) '
3 3 K
or n = @ Py 3¢, O
S aa- 5 (s ran i) e 3 F a0 e e et
r=kt1 h=mt1 AL jmme ho 75
k
99, 99g 99, 99g
(P P} = 2 (_a.____a._>
) d a d,
h=m+1 Pn n o Pn
We differentiate the invariant relations p, = @, =0 with respect to i on the basis of
Egs. (1.3) and (1.4), and obtain
ol - 00, dH |, O S L
Tt Y =g+ Y (ha— Y s ge) 2L % [Y,  OH b | 4 2.0
9o 9 9Pg 3ph dg dq dp
=1 r=k+41 h=mt1 r r=kt1 | f=1 h=m41
n k o7 k !P
Ap Ye () _9H
PIPIA D WP AT R PR
re=k-+1 l=1 h=m
Using the notation
K (QIs ey Qny Pmary - - o Pk) =H (ql.. ey Guy Prs- i Pmy
Pmits « -+ - Pk)
we have
K __ oH |\ oH %9 )
—-— 2.5
TBe, | g, 5175 [N (2.5
6(p‘3
ap,, = +Z 355 0P,
(0 =1,..., n,h~m+1,..., k)
from which
K, H, i
T+ Ky ga) =+ (H, 9} +L |~ (owr o]
(Gz 1..., rn)
hence relations (2.4) with allowance for (2.3) and (2.5) assume the form
(2.6)

n

+<K%}+ ( Z b,h‘;“;a)g + ) :Y: b,h%ﬁ_i i-—"—T—x

9p h r
r=k-+1 h=m-+1 re=k-41 h=m-1
k

- 9P oK
[4ah__ 2 Ajh)Tp‘;L] o =0 (a=1,...,m)
j=m+1

where it is assumed that the coefficients are defined in texms of ¢y, ..., 9 Pmys -+ Pr DY
(1.4) and (2.2). Function K thus satisfies the system of Egs.{(2.6) in partial derivatives

Let us show that the system consisting of Egs. (2.2) and equations

4K K
=0 —=0, —=0 (2.7)
ap, dg; oq,
(]_m+1r' )k: r=k+17"'?n)
represents a set of invariant relations for the system (1.3), (1.4).
First, using (2.5), we obtain
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T A(r) BK 9K

ag, “he ap;9p,, P,

K aK K IRk
brh (

89, 0p,  OPom, %,

w(am) =)+t 5 X )+
P; P; ,=k 1 hemeta r=k+41 h=m +1 g==m-l

1 oH [ K 3 b P by 2K
P73 }+ T (b’“— 2 ™ 5p ) 2 Z ™ op0p, 94,
;{ g L9995 { ooty h=m-+t1 " o

r=k+1 h=m-+1
o § 03
t?qr ) he ap, 6pj6ph

r=k+1 h=em-p1 s=m--1

k3

Differentiation of the system of Egs.(2.6) with respect to p; shows that the coefficient
at @H/dp, is a linear combination of first order derivatives of K. Pinally, we have

D A PK_K ___®BK A _PK 0K
'D_t( p) {X 6P}+Z¥b’“(dpﬁq,?7}; 3p;0p, 0 ,) ZZZ A 9p,9p;, 0p5+
o op, 1 K a dp, \ 0K

Eapa[{ = K} Z [ra Zbrh a]Tr—Z;’E‘(brh'—a;%’)?}T"*‘
8 Iar ) ry K
Y X a [ (- Lavge) | 5]

Hence (D/Df) (9K/dp;) is a linear combination of 0K/dp,, 0K/dq;, 8K/dq. j =m + 1, .., kir=
k-41,..., n) and, consequently, vanishes together with them. The proof that the derivatives
(D! Df) (0K/6q;) and (D/D#) (9K/dg;) are zero is similar, which proves the result. It follows from
Eqgs. {2.6) that Egs.{(2.7) yield 0K/dge = 0 (@ =1,...,m) , so that the n <4k — 2m relations
of (2.7} represent the condition of stationarity of K.

Thus, if system (1.3), (1.4) has m invariant relations that are solvable for p;, ..., Pm
and satisfy conditions (2.1} or (2.3}, the n + &k conditions of stationarity of H reduce to
n+k—2m equations (2.7).

Suppose that relations (2.7) are solvable for Gumirses «» Qks Qks1s - « +» Qs Pmeds - - -» Pp. Then
Egs. (2.6) and (2.7) enable us to express these variables in terms of function of ¢y, ..., ¢,.
We divide system (1.3), (1.4) in two parts
dq, aH . . Z Z AD
N B S S W IR
. aH , |
qr =Zbria—pi (L=1,...,k,r=k+1,...,n)
T
4 aH
_;iiz w, (@=h-.m
The first 2n — m egquations necessarily satisfy the considered here values gpig - - s ¢ Poo

... Pr; by substituting in 8H/dp, for them functions of ..., ¢n We obtain a system of
first order differential equations of standard form which are used for determining ¢y ..., Gm
as functions of &, and of m constants of integration. Substitution of the first integral for
any of the invariant relations results in the appearance of a new constant.

We have thus obtained the following extension of the Levi-Civita theorem to nonholonomic
systems.

Theorem, If system (1.3}, (1.4} admits m invariant relations {(respectively, #m first
integrals) solvable for m parameters py..., p, and satisfies conditions (2.1} or (2.3}, then
it has oo™ (respectively, oo?™) particular solutions that are determined using m first order
equations of standard form.

When there is only a single invariant relation (m = 1), conditions (2.1) or (2.3) are

evidently automatically satisfied.

3. Example. Consider a heavy sphere of radius ¢ and mass m, whose center of mass ¢
coincides with its geometric center, and the mass is symmetrically distributed relative to the
diameter Gz. Let ¢ be the sphere moment of inertia about ¢z and A the moment of inertia
about the diameter normal to Gs. The sphere rolls without slipping on the horizontal plane

70y - We denote by ¢35 the upward directed vertical with unit vector z, . As parameters
we have coordinates =,y of point ¢ and Euler's angles 6, 9,%v.
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Let V; be the velocity of point ¢, and @ and ¢ be the sphere instantaneous angular
velocity and moment of momentum about point &, respectively. The equations of motion are

V=@ Xz, (3.1

0 matty X (@ W 2q) == ¢ {3.2

where ¢ is the vector constant of integration. The energy integral is of the form

6.0+ ma* (@ X ) =h
Combining it with Eqg. (3.2) we obtain

Qo= h (3.3)
Let (e, 0,¢;) be components of ¢ (by a suitable selection of axis ¢z, the second component
can be reduced to zero). Formula (3.3) of form
= co (Beos Y+ @ sin Bsing) o (P4 @eos8) — h =0 (3.4)

is used as the invariant relation.

Integration of the problem reduces to quadratures /4,5/, We shall show that the above
theorem enables us to obtain particular solutions.

Equation {3.1) yields

" — a (8 siny— ¢ sin B cosy) = 0, y' -+ a (8" cos P -+ @ sin O sinP) =0 (3.5)

hence
28 = (4 4 ma®0"2 + (492 4 ma®9'?)sin? 6 -+ C ($ cos 8 - )2

(in this case Voronets' equations reduce to Chaplygin's equations /1/}.
We denote by pg, by Py the variables conjugates of 8, ¢,% and obtain
pg? 1 . . ) .
H = m-{— A {(Asin? 0 4 € cos?0) p,* — 2 cos Bppy, + (C -+ ma? sin? 0) py?
A = [CA -+ ma® (4 sin? § -} € cos? 6)]sin? O
and (3.4) assumes the form

fs—i—{(cnsinesinlp—kclcose) {(Asin26+6c0926)p@—— Ccosep¢]+ (3.6)

. Colg COS Y
¢y [~ C cos Gp(p -} (C + ma® 5in? 0) pw]} -+ ek b )

With condition (3.6) satisfied, the conditions of stationarity of H are written in sym-
bolic form as &H — f =0, where X is an undetermined multiplier. From this

—0 sin + @ sin 0 cosP = 0 (3.7)
pe== hoocos §, po=A(cosinBsing + ¢ cos8), py=ig (3.8)

Representing (3.2) in the form of its projection on the axis O, and taking into account
(3.7) we obtain

¢ eos8 + ¢ =0 {3.9)

which implies that
Py = ma? sin® 8¢°, p, — A4 sin® 8¢’

Hence using (3.8) we have

<,

0 . s
—-—:—-——-—~——c“snn051ntp+cose

1

and, finally, taking into account (3.9) we obtain

Y [ fH‘.___m“i_*_t) (3.10)
g8 = sin P W—"" A ¢

Formulas (3.9) and (3.10) yield
ﬂi‘“‘i siny
&~ YTy

hence (® is the constant of integration)
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GOS(Q—®)=VL:TS:{__1 (3.11)

Differentiation of (3.10) with respect to time yields

ycosy

0= y’+sinﬂT¢.
Using this formula and also (3.9) and (3.4) we obtain for ¢ the differential equation
v , . y2A =
¥+ sin® P =h <h —h[cw(1+ A+ma")} ) (3.12)
Consequently
241 S
“‘g‘P=—VY;" gy V1 (1 — )] (3.13)

where 1 is the new constant of integration. Conditions (3.5) with allowance for (3.7), (3.9),
and (3.12) assume the form
=0, y = ayk

i.e. point 6 moves uniformly along a straight line parallel to Opy,.
Thus oo® motions of the sphere have been indicated; similar results were obtained by
Agostinelli /5/.

4, One generalization. Let us now show that the Levi-Civita theorem can be extended
to a material system whose position is determined by n Lagrangian coordinates ¢y,.: - ¢, and
which is subjected to forces defined by derivatives of function U (g1, .., @n) and, also, to
gyroscopic forces (this result was obtained in /6/ for systems of a less general form and, be-
cause of an error in calculations, only for particular cases).

Motions of this system are defined by the Lagrange equations

n
d (9L L S
T;(—aq—‘-)-—m=;&m (t=1....n)

where L (g, ¢/} is the Lagrangian, and g;; are continuously differentiable functions of g¢,..
vs Qry 41y - .., gx which satisfy conditions gy = —gu (i, k=1,..., n).
Setting
n
oL . .
== H=2p(q‘ —L
[ ;
=1

shows that the equations of motion can be represented in the canonical form
n
dg; oH dpy 0" oH . (4.1)
3t~ Fp,’ Td T oq +Zg“‘ Py (i=1,....m)
k=1

where g;, is now expressed in terms of g, p:.
Assume that system (4.1) has m independent of time { invariant relations

ful@use + s Gns P1se ey Pn) =0 w=1,.., m< n)
that satisfy the conditions
n n afu af,,
(f“’f°)+22g”'ap_'o_;>_=0 (urv=1;---;m) (4-2)
r=1 s=1 r M

where (f,, f,) are Poisson's brackets of f,and f,.
Let us carry out calculations as in Sect.2, and assume that m invariant relations are
solvable for p,,..., pm

Pa — Qo (qlv.' v oy Qny Pmt1se » = Pn) =0 ((l == 1!' ..y m) (4-3)

Conditions (4.2) assume the form
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8,
a—q:— +{q>a,<pe}—~gas+ Z (gah

h=m$1

kid i
g, dg
) Z Zghs‘-“”ap: "“"apf =0 (a=1,...,m) (4.4)

he=m41 s=my

ki3
99, 99 99, 99
{Qa, 9} = 2 (_E._E._»_J_‘B)
3p, 9q, EZ3 .
L \ OB; % 7; 9p;
Differentiating with respect to time relations (4.3) with allowance for (4.1) and intro-

ducing the function

K(Ql’ s Pmanr o P) =H (@1 -« - s Qs 91y + + o5 Pras Prnigre + = +Pn)

we obtain
n n
K | a K
=K e — Y [m—» gnp| =0 (a=1,...,m) (4.5)
B4, 7 op; | opy
j=mn41 f=mt1 ’
where gon and g are expressed in terms of ¢5,- .., Gn Pmirs -+ -, Pp using (4.3). Hence K

satisfies the system of differential equations with partial derivatives (4.5).
Moreover, it is possible to show that Egs.(4.3) and

0K/dp; =0, 0K/dg; = 0 (j=m +1,. .., n) (4.6)

yield a set of invariant relations for system (4.1). For example, we have

o () =%} E Z e Ty o,

h—m+1 #=m1
m
oH o, v g 3 K
—_— LKL+ — — R
F) [{ } Z _ (grzh Z 8sh E] E}
&=t Pa M1 %; sl Es n
hence (D/Df) (3K/dp;} is a linear combination of first partial derivatives of K.

It follows from Egs. (4.5) that Egs. (4.6) imply that 8K/8g, =0 (@ =1,..., m). Because
of this the conditions of stationarity of K reduce to 2(rn — m) conditions (4.6)., If we
assume that Egs. (4.6) are solvable for ¢n prn (B=m -+ 1,..., n), then Egs.(4.3) and (4.6) en-
able us to express ¢msyyr » -» Gn» P1se - -» Pp in terms of functions of ¢q,. .., gn. Substituting
these into the equations

dqq/dt = 8H[0ps (@ = 1,..., m)
we obtain ¢y ... ¢m in the form of functions of f, and m constants of integration.

Theorem. If system (4.1) has m invariant relations (respectively, m first integrals)
solvable for m parameters p; and satisfy condition (4.2) or {4.4), it has oo™ (respectively,
0™ particular solutions that are obtained as the result of integration of m first order
equations of standard form.

The last theorem includes, as a particular case, the extension of the Levi-Civita theorem

to nonholonomic systems defined by Chaplygin's eqguations.
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